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a b s t r a c t

One measure of the resilience of any dynamical system is the speed of return to equilibrium following
perturbation. In electrical power distribution systems this may be approximated by the duration of
unscheduled outages due to failure of the distribution system (i.e., excluding outages due to failure of the
generation or transmission systems). We hypothesize that the resilience of power distribution systems
depends on two main factors. One is the power distribution infrastructure, the biophysical environment
within which it operates, and interactions between the two. The other is the priority given to restoration
by the power company, and the effectiveness of the power company’s response. To test this we modeled
outage duration in the residential electrical power distribution system in part of the City of Phoenix,
Arizona between 2002 and 2005. We found that while the type of infrastructure did not have a signifi-
cant effect on outage duration, the interaction between infrastructure (overhead lines) and the
biophysical environment (vegetation) did. We also found strong evidence that proximity to particular
high priority emergency assets (i.e., hospitals) confers resilience on residential distribution systems.
More generally, residential outage duration was found to be most spatially dependent up to around 1000
feet from an outage location. Overall, a spatial outage duration model provided a better fit to the data
than a non-spatial model.

� 2011 Elsevier Ltd. All rights reserved.
Introduction

Resilience is increasingly recognized to be an important
dimension of the sustainability of a wide class of human, natural,
and engineered systems (Adger, Hughes, Folke, Carpenter, &
Rockstrom, 2005; Brock, Mäler, & Perrings, 2002; Turner et al.,
2003; Walker et al., 2006). Resilience is commonly measured in
one of two ways: by the size of the shock needed to dislodge
a system from its current operational state (Holling, 1973), and by
the speed with which a system returns to equilibrium after
a disturbance (Pimm, 1984). In this paper we explore the resilience
of an electric power distribution system in the second sense. Our
measure of resilience is the speed with which the system returns to
normal effectiveness after an accidental outage, approximated by
the duration of the outage. We conjecture that resilience depends
partly on the physical characteristics of the power distribution
network, and partly on the effectiveness of network management.
The physical characteristics of the network include whether it is
‘loop’ or ‘radial’ in design, whether power lines are above or below
ground, how they interact with the biophysical environment and so
(P.J. Maliszewski), charles.
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on. The effectiveness of network management includes both the
triage system that prioritizes responses to outages, and the effi-
ciency of those responses.

The motivation for focusing on a ‘speed of return’ notion of
resilience is that it is more directly related to the cost of system
failure. The cost of power outages depends on their duration. In
addition, we note that there exist data on outages, but not on the
intensity of the shocks that cause them. Many studies indicate that
the damage of an outage to a residential energy consumer increases
linearly with the length of the interruption (Ahsan, 2004; Allan &
Billinton, 1993; Brown, 2002; Kariuki & Allan, 1996). Billinton and
Wangdee (2003) also show that the time of day, day of the week,
and time of year matter. While the effect of interactions between
environmental, infrastructural, and social conditions on duration of
outages remains underexplored (Kwasinski, 2010), the impact of
any one set of conditions is reasonably well understood. Chow,
Taylor, and Chow (1996) show that outage duration is strongly
correlated with the shocks that cause outages. Research on factors
affecting outage duration has primarily involved storm winds and
earthquakes (Davidson, Liu, Sarpong, Sparks, & Rosowsky, 2003;
Reed, 2008; Reed, Powell, & Westerman, 2010; Reed, Preuss, &
Park, 2006). In addition to the intensity of weather events,
however, Liu, Davidson, and Apanasovich (2007) note that the type
of infrastructure (i.e. transmission lines, substations, protective
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devices, and service transformer) and environmental conditions
(i.e. population density and land cover) are also important factors.

Aside from interactions between infrastructure and the envi-
ronment, we focus on another dimension of the resilience of power
distribution infrastructures that has largely escaped atten-
tiondnamely, the spatial dependence of outages experienced by
electricity consumers. Spatial dependence is the tendency of nearby
locations to possess similar attributes (Goodchild, 1992). It occurs
whenmeasures of attributes are correlated over space on account of
underlying spatial interactions. It has been applied to geographical
analyses of health (Crighton, Elliott, Moineddin, Kanarogloub, &
Upshur, 2007; Ha & Thill, 2011), crime (Wang & Arnold, 2008; Ye &
Wu, 2011), non-market valuation (Can, 1992), knowledge
networks (Anselin, Varga, & Acs,1997; ÓhUallacháin & Leslie, 2005),
economic development (Dall’erba & Le Gallo, 2008; Rey &Montouri,
1999), water consumption (Chang, Parandvash, & Shandas, 2010;
Scott, Dall’erba, & Caravantes, 2010) and species habitat distribu-
tion (Gao & Li, 2011; Miller, 2006; Su, Jiang, Zhang, & Zhang, 2011).

To date there have been relatively little analyses of spatial
dependence within infrastructure systems. Yet, we would expect to
see spatial dependence both because of the structure of the network,
because infrastructureeenvironmental interactions depend more on
neighborhood than on individual residence characteristics, and
because the speed of response to outages in any given area depends
on the presence of particular types of consumer. To our knowledge,
there is no outage duration model incorporating spatial dependence
among consumers. But where spatial dependence exists, a spatial
outage durationmodel is needed to produce unbiased and consistent
parameter estimates. We investigated the relation between outage
duration and proximity to locations that have the highest priority in
power companies’ response strategies. Where individual residences
are located near high priority public facilities such as hospitals, for
example, we found that they benefit from a triage process by power
companies that privileges emergency services. That is, hospitals
‘confer’ resilience on the power distribution system in the immediate
neighborhood. This aspect of the resilience of electrical power
distribution systems has not previously been studied.

We modeled average outage duration across Phoenix, Arizona,
between 2002 and 2005, using spatially explicit outage data
provided by a local utility company. Outages are defined as all
unscheduled incidents where voltage falls to zero. This includes
momentary incidents persisting no longer than a few seconds and
blackout incidents persisting longer than several minutes. We focus
on the distribution system (the supply of low voltage electricity
from distribution substations to end users) rather than the trans-
mission system (the bulk supply of high voltage electricity from
a generating source to distribution substations) since we are
interested in residential power outage duration. Because the
distribution system covers a greater geographical area than the
transmission system, it also encompasses a wider variation of
urban conditions, is more exposed to hazardous environmental
events and conditions, and accounts for most of the interruptions
experienced by electricity consumers (Brown, 2002; Pahwa, 2004).
Wemodeled the effect of a variety of interacting environmental and
infrastructural conditions on outage duration, including vegetation
abundance, feeder type, age associated with feeder, demand for
electricity, ambient temperature, the number of unscheduled
outages, the number of customers affected by those outages,
proximity to arterial roads, proximity to critical assets (i.e. hospi-
tals), and proximity to the central business district (CBD).

Hypotheses

The resilience of any power distribution system, regardless of
specific location, depends on a number of conditions. This allows us
to construct a general model that can be applied to any urban
electrical distribution system. Conceptually, outage duration
depends on the following factors:

Physical characteristics

1) The nature of external shocks: the type and intensity of
weather or other shocks is positively correlated with the extent
of damage and hence repair times.

2) Prevailing environmental conditions: places with overhead
lines that are more exposed to larger, heavier, and more
abundant vegetation conditions will be most vulnerable to
outages due to weather events.

3) Land use: dense areas may experience more outages or require
longer restoration times due to congestion.

4) Infrastructural characteristics: the type of feeder (overhead or
underground), its age, and whether a distribution system is
looped (interconnected) or radial affects its vulnerability to
weather shocks.
Triage characteristics

5) The number of customers affected: Electrical power utility
companies will give restoration priority to outages affecting
large numbers of customers.

6) Type of customers affected: Electrical power utility companies
will give restoration priority to critical assets such as hospitals.

7) Access of utility repair trucks to outage location: locations
closer to repair yards should experience shorter restoration
times.

Factors 1, 2, 3 and 4 concern the severity of the event that is
the proximate cause of the outage, and the importance of inter-
actions between the power distribution infrastructure and envi-
ronmental conditions. More severe events generally lead to more
damage and hence longer repair times than less severe events.
Similarly, some environmental conditions are expected to cause
more damage to distribution equipment than others, having
a larger impact on outage duration. For example, trees would be
expected to lead to more damage to overhead equipment than
birds simply because they are larger, heavier, and can move
through interactions with wind and other wildlife as well as grow
into conductors. Larger trees are also expected to be associated
with higher levels of damage to overhead equipment than smaller
trees.

Certain types of land use may be associated with longer resto-
ration times. For example, some locationsmay require longer repair
times due to inaccessibility. Extremely congested areas, for
instance, can be difficult environments for repair crews to work in,
owing to limited space.

Infrastructural characteristics involve the type and age of feeder
lines, which are often assumed to prolong outages. First, under-
ground cables may, on average, require longer restoration times
than overhead lines due to the necessary time for repair crews to
identify and reach underground outage sources and locations
(Chow et al., 1996). However, underground cables are less prone to
damage since they are sheltered from many environmental events
and conditions. Second, older infrastructures are more vulnerable
to failure and may need replacement during outage occurrences.
Equipment replacement will require longer restoration times for
necessary installation of new equipment. Finally, some electrical
power distribution is looped or interconnected, allowing for rapid
restoration through automated switching by utilities. This enables
a re-route of electrical power in the case that one route fails
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(Kersting, Phillips, & Doyle, 1999). In contrast, customers served
through a radial configuration that are ‘downstream’ of an outage
will incur downtime costs as repair crews repair/replace a failed
component (see Fig. 1).

Factors 5, 6, and 7 are triage characteristics, meaning they
concern response priorities and response capabilities. First, in the
event of an outage, electrical utilities usually conduct a damage
assessment that identifies the cause and location of outage, and
how many customers are affected. Deregulated electric power
providers have economic incentive to repair outages affecting more
customers more quickly than outages affecting fewer customers
because repairing outages affecting the most customers in the
event of simultaneous outages will help minimize average system
interruption times. Therefore, we expected that the number of
customers affected by an outage would be positively correlated
with the effort given to restoring the power supply.

The type of customer is also considered in the initial damage
assessment. In the event of an outage, utilities give emergency
assets such as hospitals priority over residential customers (Curcic,
Ozveren, Crowe, & Lo, 1996). Hospitals will generally encounter
shorter outage lengths than residential customers for two main
reasons. First, hospitals are typically served by ‘loop’ rather than
‘radial’ lines, and this reduces the time of any outage. Electrical
power supply can be re-routed through an undamaged feeder.
Second, hospitals are high priority customers. If an outage occurs
and affects power supplied to a hospital, that hospital will be given
the highest priority by the utility. Although many hospitals have
redundant power supplies such as back-up generators, electrical
utility companies are still obligated to restore power to these
customers first (Curcic et al., 1996). We test the hypothesis that
houses closer to hospitals will benefit from the priority given to
them. Residential customers located close to hospitals may expe-
rience shorter outages by being either connected to a looped feeder
or by having repair crews restore power outward from a prior
critical customer (i.e. a hospital). Consequently, proximity to
emergency assets may confer outage resilience to residential
customers.

Finally, after the initial damage investigation, utilities make
repairs. Repair capability depends on access of utility repair trucks
to outage locations and is ultimately important for restoration
times. Outage locations that are farther away from repair deploy-
ment yards will, on average, have longer periods of outage due to
the time necessary for maintenance crews to travel to the outage
location.
Fig. 1. Electrical feeder configurations. Radial (left) and looped (right).
Data and methods

Study area

We applied our modeling framework to a major urban area in
the Southwestern United States. The study area for this research is
a section of the City of Phoenix, Arizona. Phoenix is the sixth largest
city in the U.S. and holds about 35% of the metropolitan area’s
population (U.S. Census Bureau, 2010). Electrical power is supplied
to the area by two major utilities, Arizona Public Service (APS) and
the Salt River Project (SRP). The study area falls within the part of
Phoenix serviced by APS. Out of the 1,445,632 people in the City of
Phoenix, APS covers roughly 746,187 people, or about 52% of the
population according to the 2010 census. Fig. 2 shows the power
distribution infrastructure of the study area in relation to the
Phoenix Metropolitan Area.

Data

The purpose of modeling outage restoration times is to
understand the determinants of electrical resilience. Our measure
of the resilience of the electric power distribution system is the
time to restoration of service following a failure within that
system. Supply interruptions may occur when there is an outage
in the generation, transmission, sub-transmission, or distribution
system. We focused on the last of these. We included all reported
unscheduled outages regardless of duration. These ranged from
momentary incidents that persisted no longer than a few seconds
to blackout incidents that lasted several hours. Outages were
limited to those caused by failure of the electrical distribution
system (the low voltage power supply system between distribu-
tion substations and end users) rather than the electrical trans-
mission system (the high voltage power supply system between
a generating source and distribution substations). Outages were
then weighted by time in minutes.

Many environmental conditions potentially cause unscheduled
residential power interruptions in Phoenix, and their effect varies
depending on the configuration of the power distribution. Data on
power line location, type (overhead or underground), outage
duration, and number of customers affected for the period
2002e2005, were obtained from APS to examine the factors
affecting average residential power outage duration. Feeder line
types and locations are mapped in Fig. 2. It is clear from the map
that roughly half the study area is served by overhead lines, the
remaining area being served by underground cables. Causes of
outages were grouped into the following categories: scheduled
outages, accidental outages, and environmental outages (a subset
of accidental outages). We focused on unscheduled (i.e. accidental
and environmental) outages affecting single-family housing units.

Since our ultimate aim (not the aim of this paper) is to estimate
the capitalized value of residential electrical power resilience
through hedonic pricing methods, our sample was based on
housing sale location data. Hedonic methods decompose a mar-
keted item into a number of attributes over which purchasers have
preferences. By estimating a hedonic price function it is possible to
infer purchasers’ marginal willingness to pay (MWTP) for each
attribute. For instance, house prices can be used to infer the value of
a public service by estimating the MWTP for that service, control-
ling for salient housing characteristics, neighborhood characteris-
tics, and other environmental characteristics. House sale data were
obtained from the Maricopa County Assessor’s Office (MCAO) for
the year 2005 to account for the period of observed outages. This
yielded 6061 housing observations. We linked the number of
outages and total duration per house location sale by feeder type.
This was done by having each housing sale location assigned to its



Fig. 2. Map of study area and feeder types.
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nearest feeder line. We also used the MCAO database of parcels to
determine the construction year for each house to serve as a proxy
for infrastructure age. Fig. 3 shows the distribution of average
duration of unscheduled outages (in minutes) from 2002 to 2005
across the study area. Fig. 4 shows the distribution of the average
number of customers affected per outage between 2002 and 2005.
Fig. 5 shows the number of unscheduled outages from 2002 to 2005
at each house sale location in 2005.

We obtained further characteristics of houses that might affect
outage duration comprising several proximity variables to other
features including distance to nearest hospital, distance to nearest
arterial road, distance to nearest native desert area, and distance
to the CBD. These variables were constructed by measuring
Euclidean (straight line) distances in feet from the centroid
(geometric center) of each parcel to the nearest feature of interest.
Fig. 6 shows the proximity of each 2005 house sale to its nearest
hospital.

Other environmental variables relevant to Phoenix residents
include vegetation and bird abundance, as well as ambient
temperatures. The Soil Adjusted Vegetation Index (SAVI) was used
as a proxy for vegetation abundance and was derived from a 2005
Landsat Thematic Mapper (ETM) image. It was obtained through
the Central Arizona Phoenix Long Term Ecological Research (CAP-
LTER) project. CAP-LTER is a nationally funded project to study the
long-term ecological sustainability of cities. Fig. 7 shows the
distribution of vegetation across the study area. Bird abundance
data were also obtained through CAP-LTER. These data were
collected by monitoring birds seasonally across 40 sites from 2002
to 2004. Counts were then interpolated over the entire metropol-
itan area (see Walker et al., 2008 for methodological details).



Fig. 3. Map of average outage duration times (in minutes) from 2002 to 2005. Colored symbols classified in natural breaks. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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August minimum temperature in Celsius was used as a proxy for
Phoenix’s urban heat island (UHI), and more generally ambient
temperature. In the Phoenix metropolitan area, the UHI effect is
observed in the elevation of night-time temperatures and is most
strongly observed in the summer months (Baker et al., 2002), thus
mean August minima are appropriate indicators. These data were
also obtained through CAP-LTER and were derived from spatial
interpolation of daily temperature data from 55 meteorological
sensors from different sources including the Flood Control District
of Maricopa County (ALERT), the National Weather Service (NWS),
the Arizona Meteorological Network (AZMET), and the Phoenix
Real-time Instrumentation for Surface Meteorological Studies
(PRISMS) Network. Daily measurements were aggregated to bi-
weekly periods. Variable names, descriptions, and statistics are
provided in Table 1.
Model

Average duration of unscheduled outages was hypothesized to
depend on a set of infrastructural conditions, environmental
conditions, and triage characteristics. The infrastructural conditions
included infrastructure type, age, and location. The environmental
conditions included temperature, vegetation, bird abundance, and
proximity to desert. The triage characteristics included the number
of unscheduled outages, the number of customers affected, and the
types of customers affected. Access to repair depots (in terms of
distance) was excluded from the analysis because data on the
locations of repair depots are confidential. We estimated amodel of
the following general functional form:

yi ¼ f ðdi;oi; xi; ziÞ þ εi (1)



Fig. 4. Map of average number of customers affected per unscheduled outage from 2002 to 2005. Colored symbols classified in natural breaks. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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where i is an index of locations, y is the average duration of
unscheduled outages, d is the demand for energy, o is a vector of
associated triage characteristics, x is a vector of associated infra-
structural conditions, z is a vector of associated environmental
conditions, and εi is an error term.

The outage duration model was empirically calibrated for
Phoenix, Arizona, but the general form could readily be applied to
other urban areas. Given that our study area is constrained to
Phoenix, its desert conditions helped guide our selection of infra-
structural and environmental variables affecting power distribu-
tion reliability. In this case, infrastructural conditions comprised
the type of power distribution infrastructure, and its location with
respect to other major built infrastructures such as arterial roads.
That is:

X ¼ (feeder type, proximity to arterial road).
The outage characteristics comprised the number of unsched-
uled outages experienced, the number of customers affected, and
the type of customers affected. That is:

o ¼ (number of outages, number of customers affected, type of
customers affected).

The environmental conditions were captured by measures of
species abundance, climatic conditions and distance from the
desert. That is:

z ¼ (vegetation abundance, bird abundance, proximity to
desert).

The estimated model is:

yi ¼ aþ bddi þ
X

j

bjoij þ
X

j

bjxij þ
X

j

bjzij þ εi (2)

where



Fig. 5. Map of number of unscheduled outages from 2002 to 2005. Colored symbols classified in natural breaks. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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j

bjoj ¼ bOUTOUT þ bCUSTCUST þ bHOSPHOSP (3)

X

and
X

j

bjxj ¼ bOHOH þ bARTART (4)

and

X

j

bjzj ¼ bBIRDBIRDþ bVEGVEGþ bDESDES (5)

in which the variables are described in Table 1. We expected to find
significant interactions between the environmental variables and
the type and/or age of infrastructure. The interaction between the
environmental variables and overhead lines is straightfor-
warddweather conditions frequently affect overhead lines via the
impact they have on vegetation. We expected interaction terms
between those variables to have a positive effect on outage dura-
tion. Vegetation, especially large ‘danger trees’ (trees outside
a right-of-way that can fall within five feet of a distribution line,
(Tennessee Valley Authority, 2011)) may potentially interfere with
overhead distribution equipment. Together with overhead distri-
bution lines, heavily vegetated areas are more likely to experience
outages than areas with underground cables or fewer trees.

Temperature events (especially periods of excessive heat) are
expected to induce outages through demand spikes. To capture this
we included an interaction between housing square footage and
temperature. Square footage or temperature may be main effects.
The interaction between them is a way of weighting temperature.



Fig. 6. Map of proximity to nearest hospital (in feet). Colored symbols classified in natural breaks. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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This is simply because larger houses require more energy to cool
the living areas. Given these considerations, we also estimate an
interaction model of the form:

yi ¼ aþ
X

j

bjzijdiþ
X

j

bjoijþ
X

j

bjxijþ
X

j

bjzijþ
X

j

bjxijoij

þ
X

j

bjxijzijþε (6)

where

X

j

bjzijdi ¼ bSQFT*TEMPðSQFT*TEMPÞ (7)

and
bjxijzij ¼ bBVOHðBIRD*VEG*OHÞ þ bDESOHðDES*OHÞ (8)

X

j

We estimated the model with ordinary least squares (OLS). A
potentially important issue to be addressed in the estimation of this
model is the likelihood that an interruption at one house is
dependent on an outage at a nearby feeder. This gives rise to the
possibility that outages in a neighborhood supplied by the same
feeder or experiencing the same environmental conditions will
experience the same or similar duration of interruption. They will
be spatially correlated. However, we expect that the degree of
spatial correlation will be different in cases where power distri-
bution systems rely on radial and looped systems of energy
distribution (Perrier et al., 2010; Willis, Welch, & Schrieber, 2001).
Radial distributions provide energy to customers directly from



Fig. 7. Map of vegetation abundance per house sale in 2005. Colored symbols classified in natural breaks. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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a transformer to nearby end users whereas looped distribution
systems are interconnected, allowing for back-end power supply
routes in case a component fails. The weakness of a radial distri-
bution system is that any residence that is ‘downstream’ of a failure
will also experience an interruption.

In reality, houses are dependent on the reliability of the feeder
rather than a neighboring house. However, sincewe assign houses to
their closest feeder, this is formally equivalent to spatial dependence
between the reliabilityexperiencedbydifferenthouses servedby the
same feeder. Furthermore, neighborhoods containing many houses
will have similar biophysical environments suggesting houses
exposed to environmental conditions such as birds, vegetation,
overhead lines, or desert conditions will experience a similar effect.
Hence, it is still reasonable to explore the spatial correlation between
average duration of unscheduled outages in neighboring locations.
Spatial dependence can generally take two forms. First, it can
result from underlying spatial interactions. In the case of electrical
power supply, an outage at one house would not cause an outage at
another house. Therefore, spatially lagged dependence is concep-
tually not applicable. The spatial relationship of reliability among
neighboring houses is a spatial association of a second kind, i.e.
spatial dependence can result from misspecification in the form of
omitted variables, incorrect functional specification, or measure-
ment error. We ran spatial diagnostic tests to determine whether
spatial lag dependence or spatial error dependence should be
controlled for in the model before coefficient estimation. The
spatial diagnostic tests were based on a Moran’s I analysis of the
OLS residuals and Lagrange Multiplier methods detailed in Anselin,
Bera, Florax, and Yoon (1996). As expected, spatial diagnostic tests
indicated spatial dependence to be a result of spatial measurement



Table 1
Names, descriptions, and basic statistics of variables (n ¼ 6061).

Name Description Mean SD Min Max

TIME Average duration of
unscheduled outages
(minutes)

99.32 42.91 0 329.7

OUT Number of unscheduled
outages

44.94 26.82 1 130

CUST Average number of
customers affected per
unscheduled outage

267 184.44 0 1035

OH % houses in tract supplied
by overhead feeder

0.26 0.36 0 1

UG % of houses in tract supplied
by underground feeder

0.74 0.36 0 1

SQFT Housing area (sq. ft.) 1681.81 581.28 445 5360
ART Distance to nearest

arterial road (ft.)
1031.42 775.86 0.58 6924.81

VEG Vegetation abundance;
Soil-Adjusted
Vegetation Index

39297.06 4764.78 22013 64659

BIRD Bird abundance 129.98 18.30 78 169
DES Distance to nearest

desert area (ft.)
5727 4373.79 34.73 20672.30

AGE Proximate age of
infrastructure (yrs.)

27.80 18.84 1 105

LAKE Distance to nearest lake (ft.) 5168.50 3039.63 192 19623.70
PHX Distance to center city (ft.) 66014 26324.91 1906 125204
HOSP Distance to nearest

hospital (ft.)
12470 7512.08 261.2 47570

TEMP August minimum
temperature (Celsius)

21 0.14 20 22

Table 2
Outage duration model results (n ¼ 6061).

Name Non-spatial (OLS) Spatial (1000 feet)

Coefficient t Coefficient z

(Constant) 2.859Eþ1 12.631 31.768 8.858
SQFT*TEMP 2.315E-4 5.714 4.363E-5 1.775
VEG*OH 5.849E�4 15.152 4.545E-4 7.657
ART 9.729E-4 1.691 3.649E-4 0.538
HOSP 6.974E-4 9.104 7.526E-4 4.942
PHX/AGE �3.374E-4 �4.091 �1.750E�4 �2.564
DES �5.684E-4 �4.625 1.405E-3 5.732
OUT 2.332 45.644 2.172 43.653
OUT2 �1.550E-2 �32.775 �1.400E�2 �31.889
CUST �4.318E�2 �14.453 �5.296E�2 �18.322
CUST/HOSP 2.612Eþ1 2.393 6.497 5.448
l e e 8.674E-1 178.796
Adj. R2 0.382 e e e

Pseudo R2 e e e 0.868
MCN 21.571 e e e

Note: MCN represents Multicollinearity Condition Number.
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error rather than spatial externalities. We accordingly estimated
a spatial error model of the following form:

y ¼ Xbþ lWuþ e (9)

in which y is a vector of observations on the dependent variable, X
is a matrix of observations on the independent variables, b is
a vector of regression coefficients to be estimated, u is a vector of
spatially autocorrelated error terms, l is a coefficient to be esti-
mated, and e is a vector of error terms. The spatial weights matrix
W contains binary elements such that wij ¼ 1 if houses i and j are
considered neighbors, 0 if not, and i not equal to j. The spatial
weights can be constructed in different ways. We chose to use
a distance band comprising the distance limit from which a feeder
provides electricity to nearby houses. We tested a range of distance
bands. At one extreme, the spatial weights matrix defined neigh-
bors on the basis of a minimum Euclidean distance threshold such
that each house had at least one neighbor. This resulted in each
house sale within 3760 feet from sale location i as a neighbor. At the
other extreme, every house within a distance radius of 500 feet of
house i was considered a neighbor. Based on a Moran’s I analysis,
the most suitable representative supply range appeared to be
somewhere in between 800 and 1200 feet.

An issue in estimating the coefficients in a spatial regression
model is that since spatially lagged variables are endogenous they
need to be instrumented on the relevant exogenous variables
(Anselin, 2002). We estimated these coefficients using the
Maximum Likelihood Estimation method in GeoDa� (Anselin,
Syabri, & Kho, 2006).
Results

Coefficient estimates for the non-spatial and spatial outage
duration models are reported in Table 2. The overall fit for the non-
spatial model was reasonable (adjusted R2 ¼ 0.382). Diagnostics
revealed low multicollinearity (Multicollinearity Condition
Number ¼ 21.571) but indicated severe spatial dependence. Table 2
also provides coefficient estimates for each of the outage factors in
a spatial error model with neighbors defined on the basis of
observed houses within 1000 feet from observed house location i.
The pseudo- R2 value for the spatial error model was 0.868da
substantial improvement over the non-spatial model. The coeffi-
cient for the spatial error term was positive and highly significant.

In the non-spatial model, the most significant factor explaining
the duration of unscheduled outages was the total number of
unscheduled outages. However, the relationship between number
of outages and average outage durationwas not linear. A scatterplot
visualization between number of unscheduled outages and average
duration of outages shows a steep increase in average duration up
to about 40 outages. After that, the slope significantly decreases but
remains positive. This might be explained by the difference in
infrastructural and environmental conditions corresponding to
observations above and below 40 outages. The variation in infra-
structural and locational characteristics in houses experiencing
more than 40 outages was relatively small, since these areas are
served primarily by overhead lines. By contrast the differences in
infrastructural characteristics and locational characteristics in
houses experiencing less than 40 outages were much larger.

We found the interaction between vegetation abundance and
overhead distribution lines to be positively and significantly related
to the average duration of an outage. Consistent with our expec-
tation that proximity to high priority public facilities confers
resilience on neighboring infrastructures, we found that distance
from the nearest hospital was positive and highly significantly
related to outage duration. That is, houses closer to hospitals are
likely to have their power restored much more quickly than houses
farther away from hospitals.

Also consistent with our expectations, we found that the
number of customers affected per outage reduces the average
duration of an outage. An interaction term between proximity to
the nearest hospital and number of customers affected was also
significantly related to outage duration, meaning locations with
fewer customers affected and relatively far from hospitals tend to
have longer outage durations. The interaction between housing
square footage and ambient temperature was positive and signifi-
cant, indicating greater energy demand increases the average
duration of outages. Finally, an interaction between distance to the
CBD and the age of infrastructures was also significantly related to
outage duration. The coefficient on the distance to the nearest
arterial road was positive and marginally significant, indicating
outage locations farther from arterial roads tend to have longer
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durations than outage locations closer to arterial roads. The coef-
ficient for distance to the nearest native desert area was negative
and significant implying outage locations close to desert areas on
average tend to have longer outage durations than areas farther
away from desert areas.

For the spatial error model, the interpretation was broadly
similar. However, we found that the ‘distance’measures used in the
non-spatial model changed. The coefficient on distance to the
nearest arterial road became insignificant, and the coefficient for
distance to the nearest desert area switched in sign while
remaining significant. Both effects may reflect collinearity between
the distance measures used and the spatial weights inW. Lastly, the
significance of our proxy for energy demand (the interaction
between house size and temperature) was reduced. At the same
time, the coefficient for spatial dependence turned out to be posi-
tive and highly significant, indicating that houses in the same
neighborhood (within 1000 feet) are likely to experience very
similar duration per electrical power interruption.

Discussion and conclusions

There is a general consensus in the literature that the factors
affecting the number of power outages also affect their duration. In
particular, the extent of the damage caused is positively correlated
with the length of time it takes to repair that damage. This reflects
both the severity of the weather (or other) event that is the prox-
imate cause of an outage, and the vulnerability or robustness of the
infrastructure. The vulnerability of infrastructure is related both to
its type and its age.We found that the age and type of infrastructure
interacts with environmental conditions and environmental events
to explain the duration of outages. This appears to be particularly
true for vegetation abundance. This may be because vegetation
causes more damage than other environmental variables such as
birds. The latter are significant source of outages, but do not explain
outage duration. Proximity to the CBD is also highly correlated with
both age and infrastructure type. Specifically, overhead lines are
more frequently found close to central Phoenix, and are older than
other lines. Contrary to expectation, we found that the duration of
outages in areas served by underground lines was shorter than in
areas served by overhead lines.

What we found that has not previously been noted in the
literature is the degree to which proximity to high priority public
services such as hospitals confers resilience on the neighboring
infrastructure. We have noted that the resilience of infrastructures
depends both on the physical characteristics of the power distri-
bution network, and on the effectiveness of network management.
In particular, the time to restoration of power supplies depends on
the resources committed by the electricity supply company. This
generally reflects a triage that takes into account both the number
and type of customers affected. Outages that impact large numbers
of people or high priority public services attract attention over
sparse residential areas. Residential areas in the neighborhood of
high priority users benefit from a positive externality conferred
both by the quality of infrastructure provided and the priority given
to restoring supply to those users. Our findings suggest that utility
companies give greater priority to both critical customers and
a large number of customers. It is worth noting, though, that not all
public facilities confer resilience on neighboring areas. We also
tested the importance of proximity to police stations, fire stations
and schools. All turned out either to be insignificant or to have
a negative relation to outage duration. Data that would be useful in
further research include the spatial footprint and intensity of
weather events (since many of these are quite localized), and the
locations of utility repair depots (since these may help explain
response/restoration times).
Finally, we found that incorporating a spatial error term
improves the model fit substantially (by 227%). While a non-spatial
outage duration model provides insight into the main factors
affecting the resilience of infrastructures, the coefficient estimates
are inconsistent by the high spatial dependence among outage
durations. The spatial model provides additional information on
the degree to which neighboring houses endure similar outages.
We found that spatial associations are strongest between 800 and
1200 feet with spatial associations decreasing with increases in
distance over 1200 feet. To our knowledge, this is the first study to
explore the effect of interactions between environmental, infra-
structural, and social conditions on the resilience of power distri-
bution networks accounting for spatial dependence among
residential properties. These findings are important for both
understanding the resilience of electrical power distribution
systems, and for future energy resilience planning.
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